352 research outputs found

    Finite-time extended state observer and fractional-order sliding mode controller for impulsive hybrid port-Hamiltonian systems with input delay and actuators saturation: Application to ball-juggler robots

    Get PDF
    This paper addresses the robust control problem of mechanical systems with hybrid dynamics in port-Hamiltonian form. It is assumed that only the position states are measurable, and time-delay and saturation constraint affect the control signal. An extended state observer is designed after a coordinate transformation. The effect of the time delay in the control signal is neutralized by applying Pade ́ approximant and augmenting the system states. An assistant system with faster convergence is developed to handle actuators saturation. Fractional-order sliding mode controller acts as a centralized controller and compensates for the undesired effects of unknown external disturbance and parameter uncertainties using the observer estimation results. Stability analysis shows that the closed-loop system states, such as the observer tracking error, and the position/velocity tracking errors, are finite-time stable. Simulation studies on a two ball-playing juggler robot with three degrees of freedom validate the theoretical results’ effectiveness

    Finite-time disturbance reconstruction and robust fractional-order controller design for hybrid port-Hamiltonian dynamics of biped robots

    Full text link
    In this paper, disturbance reconstruction and robust trajectory tracking control of biped robots with hybrid dynamics in the port-Hamiltonian form is investigated. A new type of Hamiltonian function is introduced, which ensures the finite-time stability of the closed-loop system. The proposed control system consists of two loops: an inner and an outer loop. A fractional proportional-integral-derivative filter is used to achieve finite-time convergence for position tracking errors at the outer loop. A fractional-order sliding mode controller acts as a centralized controller at the inner-loop, ensuring the finite-time stability of the velocity tracking error. In this loop, the undesired effects of unknown external disturbance and parameter uncertainties are compensated using estimators. Two disturbance estimators are envisioned. The former is designed using fractional calculus. The latter is an adaptive estimator, and it is constructed using the general dynamic of biped robots. Stability analysis shows that the closed-loop system is finite-time stable in both contact-less and impact phases. Simulation studies on two types of biped robots (i.e., two-link walker and RABBIT biped robot) demonstrate the proposed controller's tracking performance and disturbance rejection capability

    Nonprehensile Dynamic Manipulation: A Survey

    Get PDF
    Nonprehensile dynamic manipulation can be reason- ably considered as the most complex manipulation task. It might be argued that such a task is still rather far from being fully solved and applied in robotics. This survey tries to collect the results reached so far by the research community about planning and control in the nonprehensile dynamic manipulation domain. A discussion about current open issues is addressed as well

    Aerial Manipulation: A Literature Review

    Get PDF
    Aerial manipulation aims at combining the versatil- ity and the agility of some aerial platforms with the manipulation capabilities of robotic arms. This letter tries to collect the results reached by the research community so far within the field of aerial manipulation, especially from the technological and control point of view. A brief literature review of general aerial robotics and space manipulation is carried out as well

    Introduction to the Special Issue on Aerial Manipulation

    Get PDF
    The papers in this special section focus on aerial manipulation which is intended as grasping, positioning, assembling and disassembling of mechanical parts, measurement instruments and any other kind of objects, performed by a flying robot equipped with arms and grippers. Aerial manipulators can be helpful in those industrial and service applications that are considered very dangerous for a human operator. For instance, think of tasks like the inspection of a bridge, the inspection and the fixing-up of high-voltage electric lines, the repairing of rotor blades and so on. These tasks are both very unsafe and expensive because they require the performance of professional climbers and/or specialists in the field. A drone with manipulation capabilities can instead assist the human operator in these jobs or, at least, in the most hazardous and critical situations. As a matter of fact, such devices can indeed operate in dangerous tasks like reaching the bottom of the deck of a bridge or the highest places of a plant or a building; they can avoid dangerous work at height; aerial platforms can increase the total number of inspections of a plant, monitoring the wear of the components. Without doubts, aerial manipulation will improve the quality of the job of many workers

    Wheel Slip Avoidance through a Nonlinear Model Predictive Control for Object Pushing with a Mobile Robot

    Get PDF
    Wheel slip may cause a significative worsening of control performance during the movement of a mobile robot. A method to avoid wheel slip is proposed in this paper through a nonlinear model predictive control. The constraints included within the optimization problem limit the force exchanged between each wheel and the ground. The approach is validated in a dynamic simulation environment through a Pioneer 3-DX wheeled mobile robot performing a pushing manipulation of a box. (C) 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved

    Hierarchical Task-Priority Control for Human-Robot Co-manipulation

    Get PDF
    The extensive distribution of collaborative robots in indus- trial workplaces allows human operators to decrease the weight and the repetitiveness of their activities. In order to facilitate the role of the human worker during the interaction with these robots, innovative con- trol paradigms, enabling an intuitive human-robot collaborative manipu- lation, are needed. In this work, a dynamic and hierarchical task-priority control framework is proposed, leveraging a physical interaction with a redundant robot manipulator through a force sensor. The foremost objec- tive of this approach is to exploit the non-trivial null-space of the redun- dant robot to increase the performance of the co-manipulation and, con- sequently, its effectiveness. A comparison between the proposed method- ology and a standard admittance control scheme is carried out within an industrial use case study consisting of a human operator interacting with a KUKA LBR iiwa arm

    Linear Time-Varying MPC for Nonprehensile Object Manipulation with a Nonholonomic Mobile Robot

    Get PDF
    This paper proposes a technique to manipulate an object with a nonholonomic mobile robot by pushing, which is a nonprehensile manipulation motion primitive. Such a primitive involves unilateral constraints associated with the friction between the robot and the manipulated object. Violating this constraint produces the slippage of the object during the manipulation, preventing the correct achievement of the task. A linear time-varying model predictive control is designed to include the unilateral constraint within the control action properly. The approach is verified in a dynamic simulation environment through a Pioneer 3-DX wheeled robot executing the pushing manipulation of a package

    A Constructive Methodology for the IDA-PBC of Underactuated 2-DoF Mechanical Systems with Explicit Solution of PDEs

    Get PDF
    This paper presents a passivity-based control strategy dealing with underactuated two-degree-of-freedom (2-DoF) mechanical systems. Such a methodology, which is based on the interconnection and damping assignment passivity-based control (IDA-PBC), rooted within the port-controlled Hamiltonian framework, can be applied to a very large class of underactuated 2-DoF mechanical systems. The main contribution, compared to the previous literature, is that the new methodology does not involve the resolution of any partial differential equation, since explicit solutions are given, while no singularities depending on generalised momenta are introduced by the controller. The proposed strategy is applied to two case studies: a) the stabilisation of a translational oscillator with a rotational actuator (TORA) system; b) the gait generation for an underactuated compass-like biped robot. The performances of the presented solution are evaluated through numerical simulations

    Whole-body control with disturbance rejection through a momentum-based observer for quadruped robots☆

    Get PDF
    This paper presents an estimator of external disturbances for legged robots, based on the system’s momentum. The estimator, along with a suitable motion planner for the trajectory of the robot’s center of mass and an optimization problem based on the modulation of ground reaction forces, devises a whole-body controller for the robot. The designed solution is tested on a quadruped robot within a dynamic simulation environment. The quadruped is stressed by external disturbances acting on stance and swing legs indifferently. The proposed approach is also evaluated through a comparison with two state-of-the-art solutions
    corecore